Plastics Comparison Chart

Ρ R E T I Ū M

Material	Clarity	MVTR*	O2**	C02**	Impact Strength	Recycle Code
Glass	Excellent	N/A***	N/A***	N/A***	Poor	N/A
PET	Excellent	2.0	75	540	Good	1
HDPE	Poor	0.5	4,000	18,000	Good	2
PVC	Good	3.0	150	380	Fair	3
PP	Poor	0.5	3,500	7,000	Fair	5
PS	Excellent	10.0	6,000	18,700	Poor	6
PLA	Very Good	18-22	38-42	201	Good	7

PET = Oriented or Stretch Blown Polyethylene Terephthalate, virgin or recycled HDPE = High Density Polyethylene

PVC = Polyvinyl Chloride

PP = Polypropylene

PS = Polystyrene

PLA = Polylactide

*MVTR stands for Moisture Vapor Transmission Rate in g-mil/100in. 2/24hr. MVTR is a measure of the passage of gaseous H2O through a barrier. The lower the rate, the longer the package protects its contents from moisture and ensures the moisture content of the product remains the same.

**O2 and CO2 stand for Oxygen Transmission Rate (OTR) and Carbon Dioxide Transmission Rate (COTR) in cm3-mil/m2/24hr. OTR and COTR are measures of the amount of gas that passes through a substance over a given period. The lower the readings, the more resistant the plastic is to letting gasses through.